
fJ) Pergamon
Inl.1. Solids ,)"lrlll"/UI"es Vol. JJ. ~() 26, pp. 37Y5 J?<:12. 1996

Copynght (' 1996 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0020 7683'96 $15.00 + .00
0020-7683(95)00214-6

MICROMECHANICAL ANALYSIS OF FIBER
FRACTURE IN UNIDIRECTIONAL COMPOSITE

MATERIALS

SCOTT W. CASE and KENNETH L. REIFSNIDER
Materials Response Group. Department of Engineering Science and Mechanics.

Virginia Polytechnic Institute and State University. Blacksburg. VA 24061-0219. U.S.A.

(Recein'd 16 }'vIal' 1995: in ferised!iJrfJ/27 August 1995)

Abstract In this paper. the problem of a penny-shaped crack in the center of multiple concentric
cylinders is considered. By making appropriate choices for the stress functions in each of the
constituents and making the standard assumptions of linear elasticity. it is possible to reduce the
problem to the solution of a Fredholm integral equation of the second kind which may be solved
numerically. This solution is used in conjunction with a geometry approximation to model the stress
concentrations due to a broken fiber in a unidirectional composite material. The results suggest that
models of such a shear lag may be missing important features of the stress state including surrounding
broken fibers in composite materials. Copyright (' 1996 Elsevier Science Ltd.

I. Il\TRODUCTlOl\

The redistribution of stresses in bodies caused by the presence of a crack is one of the
essential features that should be incorporated into an analysis of the strength of structures
that contain such flaws (Paris and Sih, 1964). In particular, it is the high stresses in the
vicinity of the crack tip that are of greatest importance--it is this region in which crack
growth takes place. Griffith (1920) first put forward a theory for failure of brittle materials
based on the presence of these defects. The fundamental concept of his theory is that the
boundaries of a solid surrounding a crack possess a surface tension and that when a crack
grows, the decrease in strain energy is balanced by the increase in the potential energy due
to this surface tension. His analysis considered the case of a through-the-thickness crack in
a thin plate-a two-dimensional problem. As noted by Paris and Sih (1964), in practical
applications of those results. it must be remembered that all bodies are really three
dimensional. However. finding exact mathematical solutions for three-dimensional prob
lems is of great difficulty in all but the simplest cases. One such case is the problem of a
circular disk-crack subjected to a variety of loading conditions-a "penny-shaped" crack.

Sneddon (1946) was among the first to consider the penny-shaped crack problem. His
analysis concerned a crack created in the interior of an infinite elastic medium occupying
the circle r 2 = x 2 +y2 = ('2 in the plane:: = O. Sneddon was able to exact expressions for
the stresses at any point in the body. In addition. he applied a Griffith-type criterion for
the condition of crack growth.

Collins (1962) also considered the case of a penny-shaped crack subjected to shear as
well as normal loading. His approach was based on the use of two harmonic potential
functions to represent the stresses and displacements. To illustrate the solution procedure,
Collins determined the solution for four different penny-shaped crack problems:

(i) the opening of the crack by a point force acting at an interior point of the infinite
solid

(ii) two parallel cracks in an infinite solid
(iii) an infinite row of parallel cracks in an inflnite solid
(iv) and a crack in a thick plate with stress-free faces.
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In all cases except for (i) approximate solutions to the resulting integral equations are
presented. Collins presented expressions for the work of the crack and the maximum
displacement of the crack faces.

Keer (1964) was the first to consider non-symmetrical loading of the penny-shaped
crack. He used cylindrical polar coordinates (r, e, z) where the crack, with radius a, is given
by z = O. 0 ::::; r ::::; a. The crack is assumed to be opened by an arbitrary distribution of
normal pressure. The problems are solved using a stress function technique similar to that
employed by Green and Zerna (1960). Having obtained the solution for the problem of a
crack in an infinite medium being opened by a non-symmetrical normal pressure, Keer next
considered two other problems: a crack symmetrically loaded within a stress-free, thick
elastic plate and a crack embedded in a beam exposed to pure bending. In the case of the
crack in a thick plate, Keer derived a Fredholm integral equation of the second kind for
the solution. The resulting equation must be solved by iteration or numerically.

Smith et al. (1967) developed an expression for the stress intensity factor of a penny
shaped crack in an infinite elastic solid subjected to non-axisymmetric normal loading.
Their analysis began as Keers (1964) did in assuming that, in the absence of body forces,
the complete solution for a restricted class of problems in which the shear stresses on the
plane z = 0 can be represented by a single harmonic function, ¢(r, e, z). They also expressed
the loading on the crack surface as a Fourier series. By considering the general solution in
the vicinity of the crack tip, Smith et al. developed an expression for the stress intensity
factor for the opening mode of fracture. Additionally, they showed that the state of stress
becomes that of plane strain at the tip of a penny-shaped crack for any non-axisymmetric
continuous distribution of loading on the crack surface. To illustrate the applicability of
their results, Smith et al. considered two particular cases: that of two concentrated forces
at equal radial distances on the crack surface and that of a penny-shaped crack in a large
beam subjected to pure bending.

Guidera and Lardner (1975) used the Somigliana formula from dislocation theory to
solve the problem of a crack whose deformation is caused by the action of prescribed
tractions on the crack surface. They obtained expressions for the stress intensity factors for
two cases of loading of the crack plane. normal and shear.

Lardner and Tupholme (1976) considered much the same problem as that considered
by Guidera and Lardner--only for a hexagonal crystal. By appropriately replacing certain
isotropic constants by the appropriate elastic constants for the hexagonal material, they
were able to obtain the stress intensity factors for a penny-shaped crack in a hexagonal
medium. The resulting integral equations for the hexagonal medium are the same as those
solved by Guidera and Lardner for the isotropic case. Lardner and Tupholme arrived at
the stress intensity factors by direct substitution into the previous results. Using the results
from the previous study by Guidera and Lardner for a constant unidirectional shear
traction. Lardner and Tupholme studied the effect of the anisotropy on the distribution of
stress in the vicinity of the crack.

Each of the above solutions considered the radial dimension of the body (the direction
perpendicular to the crack) to be infinite. Sneddon and Tait (1963) considered the case of
a very long (taken to be infinite) cylinder containing a crack with the center of the crack
lying on the axis of the cylinder with the plane of the crack perpendicular to that axis. They
assumed that the cylindrical surface is free from shear and is supported in such a way that
the radial component of the displacement vector vanishes on the surface. Such a situation
would arise physically if the elastic cylinder were resting in a hollow cylinder in a rigid body
of exactly the same radius. if the cylinder were then deformed by the application of a known
pressure to the surfaces of the crack. Sneddon and Tait presented the derivation of two
solutions to the problem: one based on an integral-type solution and the other based on a
series-type solution. The second is simpler, although it cannot be generalized to cover the
case in which the cylinder surface is free from stress. Sneddon and Tait obtained an
approximate solution for the case in which the crack is opened by a constant pressure.

Each of the problems considered previously has dealt with a penny shaped crack in a
homogeneous material. Dhaliwal et al. (1979) considered the state of stress in a long elastic
cylinder with a concentric penny-shaped crack, bonded to an infinite elastic medium. They
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assumed the crack to be opened by an internal pressure and that the plane of the crack was
perpendicular to the axis of the cylinder, and allowed the elastic constants of the cylinder
and the semi-infinite medium to be different. They then reduced the problem to the solution
of a Fredholm integral equation of the second kind and obtained closed-form expressions
for the stress intensity factor and the crack energy.

The ability to include multiple constituents is of particular interest in the case of
composite materials. For continuous fiber reinforced polymeric composite materials, the
tensile strength is controlled by the stress distributions surrounding fiber fractures [Gao et
al. (1992)]. In particular, the stress concentrations in fibers adjacent to the fractured ones
and the distance over which the perturbed stress field acts (the ineffective length) are required
for tensile strength predictions such as that presented by Batdorf (1982). Rosen (1964) was
one of the first to study the stress redistribution which occurs in the vicinity of a fiber
fracture in a unidirectional composite material. His analysis (a shear lag model) assumed
that the fibers support only tensile loading, the matrix supports (and transmits) only shear
loading, and that the shear transfer between the broken fiber and adjacent fibers is limited
to the matrix between those fibers. Whitney and Drzal (1987) attempted to include normal
loading in the matrix with their assumed stress function in the study of the stress distribution
surrounding an isolated broken fiber.

In this paper, an analytical model is developed which provides an approximate stress
state in the region surrounding a fiber fracture in a unidirectional composite material. The
stress state is approximate in that the adjacent fibers have been smeared together to form
a ring, making the resulting problem axisymmetric. Using a linear superposition technique
in conjunction with a fiber discount analysis such as that suggested by Case et al. (1995), it
is possible to determine the stress state in the neighborhood of multiple fiber fractures. This
stress state may then be used in strength prediction models such as that described by
Batdorf (1982) to arrive at the desired macrolevel strength predictions.

2. BASIC EQUATIONS AND THEIR SOLUTION

The present analysis is an extension of that employed by Dhaliwal et al. (1979) with
modifications made to the potential functions to allow the body to include any number of
concentric cylinder elements. We begin by considering the problem of a penny-shaped crack
of radius r c in an infinitely long elastic cylinder of radius rl' This cylinder is surround by
N - 1 concentric elastic cylinders of radius r, (i = 2, N ~ 1), as shown in Fig. 1. The crack
surface (0 ::::; r < rJ is subjected to a prescribed normal loading. The assumption of perfect
bonding requires continuity of displacements and tractions at each interface (r = r I'

r2 .... rV_l). Since the geometry of the problem is symmetric about the plane:: = O. the
problem reduces to a mixed boundary value problem for the region :: ~ O. r ~ O. By
assuming appropriate solutions for the regions of interest, the problem is reduced to the
solution of a Fredholm integral equation of the second kind. This equation may be solved
numerically. Once this solution has been obtained, it may be used to calculate the stress
and displacement components in each of the constituent materials. By using a geometry
approximation, it is then possible to used these stresses to determine the stress con
centrations in unidirectional composite materials due to a single fiber fracture.

For the case of axisymmetric loading and boundary conditions, the displacement
vector U assumes the form (u" 0, u,) in a cylindrical coordinate system (r, 0, ::). The
equations of equilibrium in terms of displacement are given by

flV'U+(i.+,u)V'(V'·U) = ()

The corresponding stresses are given by

- ( - \. cu" u, eu,
(}cc(r,::) = (/.+2p) - . +1.- +--:;-)(:: r ( r

(I)
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Fig. I. Penny-shaped crack surrounded by multiple concentric cylinders having different elastic
constants.

(2)

where i. and Jl are Lame's constants.
Following Dhaliwal et al. (1979), we may take the solution of the system of partial

differential equations given by eqn (1) in the form of

fX fC X f¢ f~
11,(1',:::) = (1-2\')-::;- +:::-:;-~.~ + "":;- +(3-4\')~-r--.:;-

cr Cl' c::: cr Cl'

where \' is Poisson's ratio and the functions X' ¢. and ~ satisfy the following relations

Solution of eqns (4) for the regions Ri • I :S; i:S; N. are taken in the form of

(3)

(4)



Micromechanical analysis of fiber fracture

ljJII!(r.:) = I.' B(¢)/d¢r)cos(¢:)d¢

."

i"(r,:) =°

(I', :) E R 1
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(5)

~ f 1
cj>(il(r,.::) = J e[C'il(¢)K,,(¢r)+E(/I(¢)/,,(¢r)]cos(¢.::)d¢, (r,.::)ER" 2 ~ i ~ lV-I

o ~

(6)

(1' • .::) E R\

ljJI\'(r,.::) = I' Di\I(¢)K1(¢r)cos(¢.::)d¢

"
(7)

where the superscript i (i = 1.2 ... IV) denote quantities for the regions R i and J i , (¢r), I"
(¢r). and K,. (¢r) denote Bessel functions of the first kind and modified Bessel functions of
the first and second kind, respectively, of ordersj (j = 0, 1). From eqns (2), (3). (5)-(7),
we obtain the following expressions for the stress and displacement components in the
regions R,. i = 1.2.... IV:

U;l' = rU(2V 1 - 1+ ¢.::)F(¢)J] (¢r) e

+ :A (¢ )/ 1 (¢r)+ B( ¢)[4(1 - r 1)11(¢r) - ¢rlo(¢r)]} cos (¢.::)] d¢ (8)

U~]I = rf

[~(2~2\'1 +¢.::)F(¢)Jo(¢r)e cc - :A(¢)/o(¢r)-¢rB(¢)lI(¢r)] sin (¢.::)]d¢ (9)
..;0 -

()~]I(r,.::) = -2/1] I' [(1 +¢.::)F(¢)Jo(¢r)e "+¢[A(¢)/o(¢r)
o
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(};~)(r,z) = -2/11 IX [~zF(~)J,(~r)e·(C+~{A(~)Il«(r)

+ B(~)[2(1- v, )1, (~r) - ~rIo (~r)]} sin (~z)] d~ (12)

u;l)(r, z) = LX {- C(i)(OK, (~r)+£I'}(OI, (~r) +D(I)(~)[4(1- vJK, (~r) + ~rKo (~r)]

+ GIl) «()[4(1 - v,)I, «(r) - ~rIo (~r)]) cos (~z) d( (13)

+(3 - 2v,)~rKo«(r)] +E(i)(~WrIo (~r) - I, (~r)] - G(i)(m(4 - 4v, + ~2 r2 )I, (~r)

-(3-2v,)~rIo(~r)]}cos(~z)d~ (15)

(};~)(r,z) = 2/1, rx

({C(I)(OK,(~r)-D(i)(m2(1-v,)K,(~r)+~rKo(~r)]
Jo

(18)

~x

u~N)(r,z) = Jo {-CIN)«()Ko(~r)+D(N)«()~rK,(~r)} sin«(z)d~ (19)

+(3-2VN)(rKo(~r)]}cos(~z)d~ (20)

(21)

(}~~)(r,z) = -2/1"1 rx

({C(N)(~)Ko«(r)+DIN)(~)[2vNKo«(r)-~rKI(~r)]}cos(~z)d(
Jo

(22)
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where Pi and Vi denote the shear modulus and Poisson's ratio for the region Ri (i = I,
2,. ooN).

3. FORMULATION OF THE PROBLEM

The problem of a penny shaped-crack of radius r, in a long elastic cylinder of radius
r l (r 1 > r,) is considered. We assume that there is perfect bonding between each of the
constituents. All of the materials are assumed to be homogeneous and isotropic. Since the
geometry of the problem is symmetric about the crack plane, we consider a semi-infinite
elastic cylinder subjected to the following boundary conditions:

a~;)(r,O) =p(r), 0< r < r, (23)

u~I)(r,z)=O, r, < r < r 1 (24)

a;; I (r, 0) = 0, 0< r < rl (25)

u~l)(r,z) = 0, r,_ I < r < r, (26)

a;~(r, 0) = 0, r,-I < r < r, (27)

The continuity conditions for displacements and tractions are given by

(28)

4. REDUCTION OF THE PROBLEM TO THE SOLUTION OF A FREDHOLM INTEGRAL
EQUATION OF THE SECOND KIND

Due to the functional forms chosen for X' ¢, and t/J in each of the constituents, it is
apparent that the boundary conditions given by eqns (24)-(27) are identically satisfied by
the stresses and displacements given in eqns (\2), (\4), (16), (\9) and (21). Substituting
eqns (\ 1) and (9) into the boundary conditions given by eqns (23) and (24), we arrive at
the following dual integral equations:

0< r < r,

Equation 30 is identically satisfied if the solution for F(~) is taken as

F(~) = ( rr h(t) sin (~t) dt
Jo

regardless of the form of he!).
Substituting eqn (31) into eqn (29), we see that the function h(t) must satisfy

(29)

(30)

(31 )
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2 II { I' rI (~r) dr I' r
2
I ((r) dr}11(1)+- ¢[A(¢)-2v I B(¢)] ;o~ ,-¢B(¢) ;1,' J d¢

n 0 0 ~ (t- ~ r-) 0 V (t" - r)

Making use of the fact that

sinh (¢t)
--

'-

r'r 2I I (¢r)d¢ = ¢tcosh(¢I)-sinh(¢t)

JO"y(t2_ r 2) ¢2

and substituting into eqn (32) we find that

') ~ f.

h(t) + =J ([A(¢) - 2\'1 B(¢)] sinh (¢t) - (¢t cosh(¢ t) - sinh (¢I))B(¢)} d¢
n 0

I I' rp(r) dr- - --- ---_ ..--"--

nil I 0 vi (t2 - r2)
(33)

Using the Fourier inversion theorem along with the boundary conditions given by eqns
(28) and the stress and displacements given by eqns (8)-( 10) and (12)-( 16), we obtain the
following relations for r = r l :

- 10 (r I 5)A(s) + r l 511(r lS)B(5) + K o(r l S)C'21 (.1') - r l sKI (r I s)D III (5)

+ 10(r l 5)E'll (s) - rioi'll (rl 5)G(2) (5)

II (r l S)A(5) + [4( 1- \' 1)11(rl.l) - rl.110 (rl s)]B(s) + K I (r] .1')('121 (5) - I] (rI5)EIll (.1')

- [4(1- \'l)KI (rioi') +rlsKu(rI5)]D'l'(s) - [4( 1- \'elll (rl'l') -rlslo(r]s)]GICI(s)

-21£ 1
= - -«(2\'1 -I)/~ +u/~)JI(rlu)F(u)du= Xl

n {} 11

1l2} ('IC) (s)[r l sKu (rl .1') +K I (r IS)] - D 'C )(.1')[ (4 - 4\'2 + rT sC )K I (rioi') + (3 - 2\'2 )r] sKu (rl 5)]

+ E I ci (s)[r I 0510 (r IS) - II (r] 05)] - Gill (.1')[ (4 - 4\'c + rT sC )11(r IS) - (3 - 2\'l)r 10510 (rI5)])

+ Il] } - A(s)[r l ·110(r l 05) - II (r l .1')] + B(5)[(4 - 4\'2 + rT5 l )/1(r I5) ~ (3 - 2\'2)r l s/o(r] s)]}

Ilcs} ('121(S)K I (rl 05) - D Il1 (S)[2( 1- \'elK I (r l .1') + r l sKo(r l .1')] - E'lI(S)II (r) 05)

- G'CI (.1')[2(1 - \'2 )/1(r l .\.) - r 1.1'10 (rl s)]} + III .I'} A (5)11(r 15)

(35)

(36)
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where, using the notation of Dhaliwal et al.,

r' sin (.1'.::) e-u'd.:: = _ . .I'

Jo (sc+uC)

r
' 2su.Ic = .:: sin (.1'.::) e ,e d.:: = ~.'-~

.0 (SC + U
C

) C

I, = r' cos (.1'.::) e ,e d.:: = __u_~
Jo (SC +U

C
)

3803

(37)

.I~ = JOY .::cos (.1'.::) e
o

, ,
lr -s-

IC d..: = -,--,.~
(.1'- + lr)"

(38)

Imposing the boundary conditions given by eqns (28) along with eqns (13)-(\ 6) and (18)
(21) and using the Fourier inversion theorem, we arrive at the following relations for
3:=Si:=SN-I:

-eli Il(s)Kj(ri Is)+EIi-11(s)/l(ri Is)+D(1 II(S)[4(1-v i I)K1(ri_ls)+r,_lsKo(r,_ls)]

+GI'-II(s)[4(I-vi_I)/I(r'_ls)~r'_lslo(riIS)]

= - Clill(S)K I (r i _ 1.1') + EIII(s)/1 (r i IS) + Dldl (.1')[4(1- V, _ I )KI (r i_ 1.1') + r i _ IsKo(ri IS)]

(39)

(40)

+ (3 - 2v i 1 )r,_ I sKo (r, IS)] + E Ii - II(s)[ri_ I slo(ri _ 1.1') -II (ri _ IS)]

-G U
-

I1 (S)[(4-4v; I +r;_ Is2)1l(r, Is)-(3-2v, I)r,_ Islo(ri IS)]}

2/l i (' ., ,
-[C"(s)[r, IsKo(r, Is)+K[(r,_ls)]-D 'II (s)[(4-4v,+ri_ls-)K j (r i IS)

r, I

+(3-2\'i dr'_lsKo(r, Is)]+EIII(s)[r,.,[s/o(r, [s)-/I(r, IS)]

-G u'(s)[(4-4\'i+ r ; 1.1'2)/1(r i -1.1')- (3-2\',)r, Islo(ri IS)]}

-EI,-I)(s)/l(r, I,I')-G(' 1)(s)[2(1-v'_I)/I(r,_ls)+r,_lsIo(r i ls)]}

=2/l i {C il (s)Kdr, Is)-D U1 (s)[2(\-v;)K I (r i Is)+r, )sKO(r i IS)]

-Elil(s)II(r, Is)-GIi)(s)[2(1-v i )I j (r i 1,1)+ri IsIo(ri IS)]}

and at the last interface (r = r, _ I )

(41 )

(42)
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- CIN-' )(s)KI (r"l_' s) + £IN-II(S)11 (rN- 1s) + DIN II (s)[4(1- vN_ I)KI (rN IS)

+ rN - ,sKO(rN_ Is)] + GIN-I)(s)[4(1- vN_ 1)1, (rN-1 s) - rN_1slo(rN_ Is)]

= CiN)(s)K I (rN_1 s) +D 1NI (S)[4(1- vN)KI (rN-1 s) + r N_ 1sKo(rN_1s)] (43)

- CIN- II(s)Ko(rN_ 1s) + DIN-I )(s)rN_I sKI (r"l_' s) - £1,"1- I) (s)lo(rN_I s)

+GIN .1)(s)r"l_,sI1 (rN_ls) = - CIN)(s)Ko(rN_ls) +DINI(s)rN_,sKI (rN_Is) (44)

2f.1N-1 fCIN-II( )[ K ) K ( )]-- \ S rN- IS O(rN_ls + I rv_ls
r N _ I

- DIN- II(s)[(4 -4v v _ 1 + r~_l s2)K, (r"l_' s) + (3 - 2vN_1)rN_ 1sKO(rN_1s)]

+ £1,"1- IJ(s)[r"l_' slo(rN-I s) - II (rN- IS)]

- G IN - Il(s)[(4-4v,v_ I + r;' IS2 )11 (r"l IS) - (3 - 2vN _ I )rN _ 1slo(r"l_' s)]}

2f.1N f ]."11 [ • •=--\C (s) rvl.IKo(ls_ls)+Kdrv_ls)]
r N - I

(45)

2f.1N- I{C UV
-

j l(s)KI (r'i_ IS) - DIN-II (s)[2( 1- v"I_' )KI (rN- Is) + r"_1 sKo(rN_1 s)]

- £IN-II(s)11 (rN_IS) - G IS
- Il(s)[2(1- VS _ I )11 (rs_ 1s) + rN - ,slo(rN-I s)]}

= 2f.1N{ C("i) (s)K I (rN_ Is)-DINI(s)[2(1- v,,)K j (r'i.ls)+rN_lsKo(rN_ls)]) (46)

Equations (34)-(37) and (39)-(46) represent a system of 4(N-I) equations for the
unknown functions A(s), B(s), C(iI(S), D(iI(S), £(i)(s), rOes), C(iI(S), and D(I)(S) at each point
in s-space. These equations may be solved by inverting the resulting matrix equation. It is
then possible to write the functions A(s) and B(s) in the form

A(s) = AjXI +A 2X2+A,X, +A 4 X 4

B(s) = BIXI +B2X 2+B,X3 +B4 X 4

where the coefficients Ai and B i are determined by the matrix inverse.
Making use of eqn (47), we may then write the following expression in the form

(47)

[A(s) - 2v 1B(s)] sinh (st) - [st cosh(st) - sinh (st)]B(st)

= C I(s, OXI + C2(s, t)X2+ C 3 (s, t)X3 + C (s, t)X4 (48)

where

C I (s, t) = A 1 sinh (st) +B I [( 1- 2v l ) sinh (st) -st cosh(st)]

C2(s, t) = A 2sinh (st) + B 2 [( I - 2v I) sinh (st) - st cosh(st)]

C 3 (s, t) = A 2 sinh (st) +Bd(l - 2v l ) sinh (st) - st cosh(st)]

C4 (s, t) = A 4 sinh (st) +B 4 [(I - 2v l ) sinh (st) - st cosh(st)] (49)

Following the analysis of Dhaliwal et al. (1979). and making use of eqns (31) and (34),
we find that the expression for Xl can be written as
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(50)

From Erdelyi (1954) we find that

J= ,rx Jo(r,u~sin~ut)du = sinh (st)Ko(rjs) , t < b.
.0 s-+u- s

and

I.

' UC JoCr, u) sin (ut) du = / _S2 IX Jo(r, u) sin (ut) du

o (S2 + u2f 0 (S2 + u2f

Differentiating both sides of eqn (51) with respect to s, we find that

(51)

(52)

(53)

Substituting eqns (51 )-(53) into eqn (50), we find that

(54)

Following a similar procedure, we find that we may write

2 I" IX uJ, (r, u) sin.(ut) du
X 2 = --(2v l -l) h(t)dt "

rr 0 0 s- + u-

2 I" . I'U(U 2-s
2
)J j(r t u)sinh(ut)dU

- - h(t) dt
n 0 0 (S2+ U2)2

The second term in eqn (55) may be rewritten as

(55)

I

x u(u2-sC)Jj(rtu)sinh(ut)du = IX uJ,(r,u)sin(ut)du -2s2 IX uJt(r,u)sin(ut)du

o (S2+ U2)2 0 S2+ U 2 0 (S2+ U2)2

(56)

From Erdelyi (1954), we find that

rx uJ,(rju)sin(ut)du . hI. " = Sin (st)K, (r,s),
.0 s- +u-

Differentiating both sides of eqn (57), we obtain:

t < b. (57)
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(58)

Making use of eqns (57) and (58), we find that eqn (55) can be written as

(59)

Using eqns (31), (36). (38), (52) and (57), we find that

Similarly, the expression for X4 may be written as

4 f' f'U
1
JI(rIU)Sin(ut)dU

X 4 =--s h(t)dt ,,' o.

n I) 0 (s-+u-)~

The second integral in eqn (61) can be written in the following form:

(61 )

f

' Uu
2
J I (r[,u) si~ (,ut) du = f'i' uJ I (rl~) Sin ,cut) du _ .1'2 f'i' uJ[ (r[~) si~ (~t) du (62)

() (.1'- +u-)- II .1'- +tr 0 (.1'- +u-)-

so that

(63)

By substituting eqns (49), (54), (59), (60) and (63) into eqn (33) we find the following
relation

f

" 1 I.' rp(r) dr
h(t) + h(u)K(u. t) du = - - : , " 0 < t < r"

(I nil I • (I 'vi t- - r-

where

(64)

4 f"K(u, t) = --
n (I

+uscosh(r[s)Ko(r[s)]C[ (.I', t) + [(2v[ -I) sinh (us)K] (r[s)

- {r[ .I' sinh (us)Ko(r[.1") - us cosh(us)K 1(r[ .I)} ]C2 (.I, t)

- H .1'2 sinh (us)K[ (r[ .1') ~ (r[ sHus) cosh(us)Ko(r1.I')

+ (1 - 2v I ) sinh (us)K[ (r [.1) - us cosh(us)K[ (r[ s)]C1 (.I', t)

+ [.I' sinh (us)K 1(r I .I) +s(us) cosh(us)K1(r[ .1') ~ s(r l .1') sinh (us)KI) (rl .1')] C4(.I, t)} dol' (65)
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Fig. 2. Composite material havIng hexagonal packing which contains a single broken fiber. The
shaded area is selected as a representative volume element for the analysis.
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Equation (64) is a Fredholm integral equation of the second kind having a kernal
given by eqn (65). This equation may be solved numerically for the unknown function h(t).

5. REPRESENTATION OF THE BROKEN FIBER PROBLEM

To analyze a single fiber fracture in a unidirectional composite, we separate the
problem into a near-field analysis and a far-field analysis. The total solution is then just the
superposition of the far-field solution and the near-field solution. The far-field solution for
a uniform strain applied in the fiber direction may be easily obtained in a manner such as
that detailed by Pagano and Tandon (1988). In posing the near-field problem, we assume
a fiber fracture has occurred in a composite with a hexagonal array of fibers, as shown in
Fig. 2. The size of the crack is denoted by 1'" the size of the fiber by 1'1' and the distance to
the nearest adjacent fiber by re. Prior to the formation of the crack, load was carried by
this region. The crack is opened by a pressure Po which is equal to the negative of the fiber
stress determined from the far-field analysis such that the superposition of the near-field
solution and the far-field solution produce a traction-free crack face. Following the sugges
tion of Carman (1993), we make the assumption that the fiber immediately adjacent to the
fracture fiber may be represented by an annular ring of material (see Fig. 3). This assumption
reduces the near-field problem to an axisymmetric one. While the point-wise stresses
determined in such a manner are not the exact solution to the near-field problem, they do
accurately depict the trends in the stress variations of interest. The inner radius of the fiber
annular ring, re• is given by the distance to the adjacent fibers. The outer radius of the fiber
annular ring. 1'" is determined from the global fiber volume fraction. For hexagonal packing,
we have

• Fiber

o Matrix

• Fractured Fiber

Fig. 3. Representation of the hexagonal arrangement as an axisymmetric one having the same fiber
vol ume fraction.
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Fig. 4. Variation of the a,JO, z) stress (at the center of the broken fiber) as a function of distance
above the crack plane for various fiber to matrix stiffness ratios.

r, = ~6rT +d

7d
r 4 =-

VI
(66)

In order to use the analysis developed previously in this paper, we allow the radius of the
crack, r" to approach the radius of the fiber, rl' Equation (64) is then solved numerically
using the Nystrom method [Press et at. (1992)].

6. NUMERICAL RESULTS

To demonstrate the solution, a number of numerical studies were conducted. The first
such study was to determine the effect of fiber to matrix stiffness ratio on the resulting stress
state. To calculate the effective composite properties we use the following prescribed values

(67)

While the use of isotropic properties to represent the composite could be questioned, this
approximation is certainly not as severe as some of the others used in the model. First we
look at the normal stress (T~~) (0, z) (at the center of the broken fiber) for a 65% fiber volume
fraction composite. This is shown graphically in Fig. 4. A number of interesting features
are immediately noticeable. First of all, we see that for high values of the stiffness ratio, the
normal stress becomes tensile before asymptotically approaching zero. Even more striking,
however, is the distance over which the near-field stress remains compressive (the so-called
ineffective length). This distance becomes smaller as the fiber to matrix stiffness ratio is
increased. This is exactly the opposite trend from that predicted using a shear-lag analysis.

Of interest for making tensile strength predictions are the stress concentrations on the
adjacent fibers and the axial distance over which this increased stress acts. Because there is
a strain gradient as a function of r as well as z, it is not possible to speak of a single stress
concentration value on the adjacent fiber. Rather this value depends upon position. To
illustrate this, we will consider two different radial locations on the adjacent fiber ring: the
inner edge of this ring (r = r 2) and the center of this ring, denoted rl

i
2 and given by
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Fig. 5. Variation of the (J,Jr" =l stress (at the inside edge of the fiber annular ring) as a function of
distance above the crack plane for various fiber to matrix stiffness ratios.

(68)

Such a comparison is shown in Fig. 5 for the case of a 65% fiber volume fraction composite
in which J.lI/ J.l2 = 20. It will be noted that there is a great difference between the maximum
stress values at these two locations. The maximum value at the inner edge is 0.183 while
the maximum value at the center is 0.052. Another interesting feature is that the maximum
stress concentration at the center of the adjacent ring does not occur in the plane of the
crack. Rather, it is located at approximately 0.4 r c above the plane of the crack. This is not
surprising in view of the results given in Fig. 4, although it is a feature not predicted by the
shear lag analysis. The maximum value of the stress concentration at the inner radius of
the fiber ring does occur in the plane of the crack (for this particular selection of composite
properties). To determine whether this was true in general, the stiffness ratio of the con
stituents was varied once again, and the resulting strain distributions plotted. The variation
of the near-field stress as a function of axial distance from the crack plane at the inner edge
of the fiber annular ring is shown in Fig. 5. Once again a fiber volume fraction of 65% was
used. In all of the cases except one (J.lI/ J.l2 = 2) the maximum stress concentration occurs in
the plane of the crack. In this one case it occurs at 0.2 r c above the crack plane. Two stiffness
ratios considered, J.lI/ J.l2 = 2 and J.lI! J.l2 = 10, give an almost identical value for the maximum
stress concentration. Otherwise, there is a distinct trend: as the stiffness ratio is increased,
the stress concentration at the inner radius of the fiber annular ring decreases.

The variation of the near-field stress as a function of distance from the crack plane for
different stiffness ratios at the center of the fiber annular ring is illustrated in Fig. 6. Here
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Fig. 6. Variation of the a,Jr, ,. =) stress (at the center of the fiber annular ring) as a function of
distance above the crack plane for various fiber to matrix stiffness ratios.
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Fig. 7. Variation of the (Lc!O. :) stress (at the center of the broken fiber) as a function of distance
above the crack plane for various fiber volume fractions.

the results follow an interesting pattern. As the stiffness is increased, the stress values
increase initially and then decrease for higher stiffness values. However, all of these values
are much less than would be predicted from a local load sharing rule. Hedgepeth and van
Dyke's analysis predicts a stress concentration of 1.104 on the adjacent fiber, which is
greater than the values obtained at the center by any of the cases studied. Such a result is
not surprising in view of the amount of axial load being carried in the present model.

As a final example of application of the model, we consider the effect of fiber volume
fraction on the stress state for composites in which PI! /12 = 20. Three different fiber volume
fractions are considered: 50%, 55%, and 65%. First we consider the effect that those
changes in fiber volume fraction have on the normal stress in the broken fiber. The results
which are shown in Fig. 7 suggest that such changes have very little effect on the stress state
in the broken fiber. However, if we consider the stress state at the center of the adjacent
fiber ring as shown in Fig. 8 we see that changes in fiber volume fraction have a significant
effect on the stress concentration seen here. The reason for these changes (the stress
concentration goes up as the fiber volume fraction is increased) is easily understood physi
cally if the geometry of the model is considered. As the fiber volume fraction is increased,
the distance from the center of the unbroken fiber to the crack tip is decreased, leading to
the larger stress concentration.

There is still one major point to be considered: the magnitude of the tensile stresses
carried by the matrix, particularly at the crack tip. The radial variation of the normal

o
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N
::::- 0.02...-NN
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-- V, 50st
- - - V, 5~

._- V, 6~

5.0 15.0 20.0

Fig. 8. Variation of the (L,(r, , • .::) stress (at the center of the fiber annular ring) as a function of
distance above the crack plane for various fiber volume fractions.
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Fig. 9. Variation of the <T~"(r. 01 stress (in the plane of the crack) for the three inner concentric
cylinders Ii = 1. 3.4).

stress, (T~~(r, 0) in the plane of the crack for the i = 2. 3.4 cylinders is shown in Fig. 9 for a
fiber volume fraction of 65%. The resulting stresses in the matrix adjacent to the crack tip
are singular (as expected) with the power of the singularity increasing as the value of J.l1!J.l2
is increased. We would therefore expect some plasticity in the matrix. which would change
the resulting stress state. This case has been recently studied using finite elements by Nedele
and Wisnom (1994).

7. CONCLCSIO]\;S AND CLOSING REMARKS

In this paper, an elasticity solution to the problem of a penny-shaped crack at the center
on multiple concentric cylinders has been presented. The problem has been formulated as
the solution to a system of dual integral equations which have been reducing to solving a
Fredholm integral equation of the second kind. Once this solution has been obtained, it is
then used in conjunction with an axisymmetric geometry approximation to examine the
stress state around a broken fiber in a composite material. The solution suggests that other
models such as shear lag may be missing important features of this stress state. In addition,
the model may readily modified to include the effects of fiber coatings in the elastic stress
concentrations. Once these stress concentrations (and the resulting ineffective lengths) have
been determined, they may be incorporated into models such as that given by Batdorf
(1982) for making tensile strength predictions of unidirectional composites.

However. there are still a number of limitations to the model. The most serious
limitations are the assumptions of linear elasticity as well as the axisymmetric approxi
mation. This severely distorts the local geometry. However. without the use of finite
elements (which have difficulty modeling the singularity at the crack tip), this seems to be
the best course of action at the present time. The are a number of ways that the present
model could be improved. The assumption of isotropic constituents could be extended to
allow the use of transversely isotropic constituents. Also. experimental evidence with model
composite systems [Case et al. (1995)] suggests that in many cases a broken fiber is
accompanied by a matrix crack which may extend to the adjacent fibers. This results in the
adjacent fiber experiencing larger stress concentrations than when only a broken fiber is
present. The present solution technique cannot be used for such a case (in which the crack
is contained in two materials). Finally. there may also be a significant amount of plasticity
at the crack tip which is not accounted for in the present analysis.
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